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ABSTRACT 

By means of the available experimental gas and liquid state volumetric data, the relative 
predictive accuracy of the Benedict-Webb-Rubin and BACK equations was compared at the 

low, intermediate and critical state range of temperatures and pressures for methane, ethane 
and ethylene. 

The average absolute volumetric deviation percent values calculated over the T-P range 
studied, showed that for both the BACK equation and the simpler Benedict-Webb-Rubin 

equation their accuracy levels increase when both pressure and temperature decrease; but the 
BACK equation proves superior for calculations performed at the critical and in the liquid 
states. 

INTRODUCTION 

The need for accurate prediction of volumetric properties of industrially 
important fluids is increasing rapidly in process analysis. Equations describ- 
ing these properties range from simple one- or two-constant expressions to 
complex equations with more than 50 constants. Even if the complex 
polynomials represent a more precise description of P-V-T data, their 
application can require difficult and time consuming iterative procedures. 
Shorter equations, on the other hand, may be less accurate but are simpler to 
use thus consuming less calculation time. 

The Benedict-Webb-Rubin equation [l-6] is one of the intermediate, 
noncubic in density, equations of state which are used for high-precision 
work, and which has proved to be highly successful in providing a good 
description of the thermodynamic behavior of real fluids for both vapor and 
liquid phases [7-12,211. 

On the other hand, the more complex BACK (Boublik-Alder-Chen- 
Kreglewski) equation of state has been found capabl’e of accurately describ- 
ing the phase equilibria of some selected pure fluids and their mixtures 
[13-191. 
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In this work we have comparatively studied the performance of the 
Benedict-Webb-Rubin equation versus the more complex BACK equation 
in fluid property estimation in terms of the predictive accuracy of the state 
equation and the relative computer time (CPU seconds) needed to complete 
the programmed iterative processes. 

EQUATIONS OF STATE 

Benedict- Webb-Rubin (B WR) equation 

The BWR equation of state is [l-12,21] 

P=RTp+ B,RT-AO-$ 
i 

p2+(bRT-a)p’+aap” 

+ $(I + w2) exd-w”) 0) 

As a modification of the Beattie-Bridgeman equation, the BWR equation 
was obtained empirically by curve-fitting the isometrics of the (P - RTp)/p’ 

vs. T plot. The BWR equation has a sufficient number of constants to allow 
accurate correlations [l-12,21]. As a matter of fact, for systems for which the 
constants and interaction coefficients needed are available, the BWR equa- 
tion is highly reliable [l-12,21]. It is interesting to note that the findings of 
this work indirectly confirm assertions made by Lielmezs and co-workers 
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Fig. 1. Comparison of absolute volume deviation percent of BACK and BWR equations for 
methane at close to critical state temperatures and supercritical state pressures. 
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[21] that the overall accuracy of the BWR equation may be improved if more 
reliable constant sets are generated, and that in terms of the available 
constants, the BWR equation of state is found less reliable in the critical 
region (see also Table 2, Figs. l-5). 
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Fig. 2. Comparison of absolute volume deviation percent of BACK and BWR equations for 
methane at intermediate range temperatures over a wide range of pressures. 
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Fig. 3. Comparison of absolute volume deviation percent of BACK and BWR equations for 
ethylene at critical state temperatures over a wide range of pressures. 
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Fig. 4. Comparison of absolute volume deviation percent of BACK and BWR equations for 
ethylene at close to critical state temperatures and low and critical state vicinity pressures. 
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Fig. 5. Comparison of absolute volume deviations of BACK and BWR equations for ethylene 
at intermediate range temperatures and low pressures. 
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The Boublik-Alder-Chen-Kreglewski (BACK) equation 

The BACK equation of state [12-191 is an inverted-square-well potential 
(Fig. 6) equation of the form 

PV 
FT=Z=Zh+Za (4 

where Zh denotes the repulsive force contributions while Za represents the 
attractive force effects. 

Following Boublik [18] and Chen and Kreglewski [13-171 we express the 
Zh term as 

Zh = 1 + (3a - 2)5 + (3a2 - 3a + 1)s’ - a213 

(1 - S)’ 
(3) 

For Za term we use the polynomial expansion of Alder et al. [19] as given by 
Kreglewski and Chen [14-161 

(4) 

where Urn/k is the minimum value of the intermolecular energy, U(r), for 

3u” 

-U 

-U 

Fig. 6. The inverted-square-well potential with U(r) = co for 0 i r < ((I - S,) and U(r) = 3U” 
fromr=(a-S,) tor=o. 
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the inverse-square-well potential (Fig. 6). We can write [14-201 

(5) 

1 
3 

(6) 

(7) 

where v is the molar volume of the system; v” is the close-packed molar 
volume; No is the Avogadro number; u is the collision diameter; and U(r) is 
the inverted-square-well potential energy. 

The characteristic constants of fluids are as follows. 
(1) (Y = characteristic constant of substance depending on the shape 

(non-sphericity) of the molecule. For small spherical molecules, (Y = 1, and 
eqn. (3) reduces to the Carnahan-Starling hard-sphere equation [20]. If 
(Y > 1.0, then the shape is something other than a convex spherical body. 

To obtain initial (Y values, we used a relation between (Y and Pitzer’s 
acentric factor, w, as proposed by Chen and Kreglewski [13-161 

(Y = 1 + 0.3w (8) 

(2) p” = close-packed volume of the molecular hard cores, with foe being 
the v” value extrapolated to 0 K. voo can be related to the critical volume, 
t, of a compound as follows [13-161 

v 
pQ=-L 

4.6 
(9) 

(3) C = substance characteristic constant, representing the ratio of S,, to 
u in the inverted-square-well potential model (Fig. 6). The numerical value 
of C has been found to be 0.12 for most of the compounds [13-161. For 
associated compounds the value may differ. 

(4) q/k = substance characteristic constant which considers the tempera- 
ture dependency of the inverted-square-well potential. According to Kreg- 
lewski and Chen [14-161, it does not significantly influence the P-V-T 
behavior of the system but affects the residual internal energy values. 

Kreglewski and Chen [14-161 proposed the following expression for the 
q/k term 

v/k = 0.6wT, (10) 

(5) U”/k = characteristic constant of fluid representing the hard sphere 
interaction energy. For smaller molecules for which vm is 5 22 cm3 g-l 
mol-’ (i.e., argon, methane), this term has been found [13-161 to be equal to 
the critical temperature, T,, of the compound. For larger molecules Chen 
and Kreglewski [13] proposed as a good initial estimate value that obtained 
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from the following expression 

UO/k=T, 1+* ( i 
-1 

. c 
(11) 

D NM represents an array of 24 universal constants originally stemming from 
the work of Alder et al. [19]. In this work however we used the set of D,vM 
values first determined by means of curve-fitting by Chen and Kreglewski 
[13-161. 

EXPERIMENTAL DATA USED AND COMPUTER PROGRAMMING 

The summary of experimental data used, along with their temperature and 
pressure ranges, is given in Tables 1 and 2. The experimental P-V-T data 
sets were taken from the work of Douslin and Harrison [23.24]. Then these 
data were cross-checked for accuracy against the values of Vargaftik [25]. 
Din [26] and McFee et al. [21]. At this point we considered these data to be 
sufficiently reliable and did not make any further study to re-evaluate their 
accuracy. Hence, the data set used for this study is only a representative one. 

The computer program consisting of a main program and six subroutines, 
was set-up to curve-fit, by means of non-linear regression methods, the five 
characteristic constants, U’/k, poo, a, q/k and C, of the BACK equation, 
then to calculate the P- V-T and phase equilibria parameters required, in 
both gaseous and liquid states. 

The main program initializes the values of the universal constant set D,, 
for the BACK equation. It also reads in the experimental data needed for the 
compound in question, the number of constants to be fitted, the number of 
sets to be used in the strategy to regress the objective function by means of a 
modified complex Box method [27], the type of weighting to be given, and 
the conversion factors for any parameter values, if needed. The main 
program controls the transfer of the various subroutines (see the following 
discussion) and controls the iterative process of computation. 

Subroutines 

ESTZM. This subroutine reads in the initial values of constants, or generates 
their values from the critical properties and relations as specified. It gener- 
ates approximate values of the saturated vapor volume by means of the 
Rackett equation [22]. 
EVAL. This subroutine performs calculations regarding the data fitting. For 
a given thermodynamic state point, subroutine EVAL takes as its input a test 
set of BACK equation constants (characteristic constants only since the 
universal constants D,, have been taken from Chen and Kreglewski [13-161 
and are fixed) and evaluates the volume, V, at given experimental P and T, 



T
A

B
L

E
 

1 

Su
m

m
ar

y 
of

 
da

ta
 

us
ed

 

C
om

po
un

d 
C

ri
tic

al
 

pr
op

er
tie

s 
a 

Ph
ys

ic
al

 
pr

op
er

tie
s 

a 

P,
 (

ba
r)

 
T

,(
K

) 
V

, (
m

3 
km

ol
-‘

) 
Pi

tz
er

’s
 

M
ol

ec
ul

ar
 

ac
en

tr
ic

 
w

ei
gh

t 
fa

ct
or

, 
w

 

C
H

, 
46

.0
4 

19
0.

58
 

0.
09

9 
0.

00
8 

16
.0

43
 

C
, f

-f
, 

48
.7

17
 

30
5.

33
 

0.
14

55
6 

0.
09

8 
30

.0
7 

C
,H

, 
50

.4
19

 
28

2.
35

 
0.

13
09

8 
0.

08
5 

28
.0

54
 

B
 W

R
 

st
at

e 
eq

ua
ti

on
 

co
ns

ta
nt

s 
b 

a 
A

, 
b 

B
O

 
c 

C
O

 
(Y

x1
os

 
yx

10
3 

C
H

, 
0.

04
94

0 
1.

85
50

 
0.

00
33

80
04

 
0.

04
26

0 
25

45
.0

0 
22

57
0.

0 
12

.4
35

9 
6.

0 
C

,%
 

0.
34

51
6 

4.
15

55
6 

0.
01

11
22

 
0.

06
27

72
4 

32
76

7.
0 

17
95

92
.0

 
24

.3
39

 
11

.8
0 

C
,H

,’
 

0.
25

9 
3.

33
95

8 
8.

6x
10

-3
 

0.
05

56
83

3 
21

12
0.

0 
13

11
40

.0
 

17
.8

 
9.

23
 

C
ha

ra
ct

er
is

ti
c 

co
ns

ta
nt

s 
of

 f
lu

id
s 

fo
r 

th
e 

B
A

C
K

 
eq

ua
ti

on
 

’ 

C
H

, 
19

0.
35

46
 

0.
02

15
19

6 
1.

00
32

6 
1.

25
78

28
 

0.
12

 
C

*%
 

29
6.

77
84

 
0.

03
15

46
7 

1.
03

05
6 

18
.1

36
60

 
0.

12
 

C
,H

, 
27

5.
15

71
 

0.
02

82
14

5 
1.

02
59

0 
15

.0
76

96
 

0.
12

 

a 
T

ak
en

 
fr

om
 

R
ei

d 
et

 
al

. 
[2

2]
 u

nl
es

s 
ot

he
rw

is
e 

in
di

ca
te

d.
 

b 
T

ak
en

 
fr

om
 

M
cF

ee
 

et
 

al
. 

[2
1]

 u
nl

es
s 

ot
he

rw
is

e 
in

di
ca

te
d.

 
’ 

T
ak

en
 

fr
om

 
R

ei
d 

et
 

al
. 

[2
2]

. 
d 

C
al

cu
la

te
d,

 
th

is
 

w
or

k,
 

un
le

ss
 

ot
he

rw
is

e 
in

di
ca

te
d.

 
e 

T
ak

en
 

fr
om

 
C

he
n 

an
d 

K
re

gl
ew

sk
i 

[1
3-

16
1.

 



271 

or again, evaluates P at experimental T and V values according to the type of 
objective function needing to be used. This subroutine also evaluates the 
error function at the input set of BACK equation constants and returns this 
error estimate to the main program. 
PPD. This subroutine takes T and V as its input and returns. through the use 
of the BACK equation, the value of P and the partial derivative (aP/i3 V) I 
as its output. 
FUDV. This subroutine takes T 

(Cl In $/at’) r as 
its output. 
MAX. This subroutine determines extreme values amongst a set of values. 
NEWCON. This subroutine determines a new set of constants that are to be 
fitted to any given function by using the values of constants in the other 
available sets and the additional knowledge of which these sets is the worst. 

RESULTS AND DISCUSSION 

Although both of the equations selected for the study. the BWR and the 
BACK equations of state, provide a good description of real fluid behavior 
in two-phase, gas and compressed-liquid regions. nevertheless, it is still 
desirable to know the differences in the levels of predictive accuracy in terms 
of CPU seconds demanded by the iteration process. This is especially true in 
cases where series of repetitive calculations for the density of the system are 
required. 

The levels of predictive accuracy were established on a relative basis by 
means of percent average absolute deviation (AAD%) defined as 

(12) 

TABLE 2 

Experimental data used a and comparison of results 

Compound Number Reduced Reduced 
of data pressure temperature 
points ( P,) range (c ) range 

Average absolute 
volume deviation (%) h 

BWR = BACK ’ 

CH, 14 0.213 -3.101 0.651 -1.000 1.73 0.52 
C,H, 12 0.9976-0.9994 0.999 30.72 3.11 
C,H, 29 0.260 -5.475 0.8435-1.000 2.20 0.63 

a The experimental data point values have been taken from the work of Douslin and 
Harrison [23,24]. 

’ These average absolute volume deviation values should be compared with the absolute 
volume deviation plots for CH,. C,H, and C,H, taken at several reduced isotherms in 
terms of reduced pressures (Figs. l-5). 

’ Average CPU time (s) to calculate density in the given state: for BWR equation, 0.2 s; for 
BACK equation, 0.267 s; machine. AMDAHL 470. 
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where i = ith data point; N = total number of data points; expt and talc 
refer to the experimental and calculated values of the data point, respec- 
tively; and II is a general property, i.e., density, volume. 

The relative calculation time effect was introduced through a CPU time 
ratio, R, defined as 

CPUBKK 
R = CPU,,, 03) 

where CPUBACK,BWR were determined by averaging the CPUs used to calcu- 
late the pressure of each state for all the states prescribed at fixed state and 
machine operating conditions for the same computer. 

Tables 1 and 2 contain the physical properties and experimental data 
used, and calculated results obtained, for comparing the relative perfor- 
mance of the Benedict-Webb-Rubin (BWR) and BACK equations of state. 
Table 1 contains the set of constants for the BWR equation suggested by 
McFee et al. [21] as the most accurate for P-V-T calculations for the 
substances given. 

Table 1 also contains the characteristic constants calculated (this work, 
except constant C which was suggested by Chen and Kreglewski [14]) for use 
in the BACK equation. As the compounds involved (Tables 1 and 2) consist 
of relatively small and simple molecules and the temperature range used was 
between the limits 0.651 < T, -c 1.000, we used the universal constant, D,,, 

set values * as originally proposed by Chen and Kreglewski 1141. 
Table 2 contains the average absolute deviations of equation of state 

predictions of volume for the given substance, the number of data points 
entered, and the temperature and pressure ranges used including the values 
of CPU seconds (Table 2, footnote c) showing the average iteration time 
needed for BWR and BACK equations at fixed thermodynamic state and the 
same computing conditions. The results obtained for the BWR equation 
(Table 2, Figs. l-5) confirm in general what in terms of accuracy should be 
expected from this type of non-cubic in density state equation for both vapor 
and liquid phases, including the large errors (up to 48%) shown along the 
critical isotherm (Figs. 3 and 4). This, especially for ethane, illustrates the 
inadequacy of the BWR equation in describing the volumetric behavior of 
the dense (liquid) phase near the critical region (Fig. 3). The average CPU 
time for the BWR equation needed to complete the iteration process at a 
given thermodynamic state was found to be CPU = 0.2 s (Table 2). On the 
other hand, the more complex BACK equation [13-161 as expected, proved 
to be highly accurate in fitting the P-V-T behavior for t-he given substances 

* The first original set consists of 24 values of the universal constants, D,,, valid down to 
r, = 0.55, the triple point of argon. The second set, not considered in this work, consists of 20 
universal constants, D,, (given by Chen and Kreglewski [15]) and may be used to a value of 
T, = 0.296, the liquid state of ethane. 
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(Table 2, Figs. l-5). The largest error up to 12% occurred along the critical 
isotherm of ethane (Fig. 3) except the error seemed to decrease as the 

pressure approached the critical pressure. At this point the BACK equation 
did show the opposite behavior of the BWR equation (Fig. 3). The average 
CPU time for the BACK equation for the length of the iteration process at a 
given thermodynamic state was determined to be CPU,,,, = 0.267 s (Table 
2). For a single iterative process for a given thermodynamic state, the BACK 
equation requires more CPU time than the BWR equation in a ratio of 
1.34: 1 (eqn. 14, Table 2, footnote c). As shown by Table 2 and Figs. l-5, 
the accuracy level of the BACK equation for the dense (liquid) phase and in 
the critical state region is much higher than that of the BWR equation. For 
low pressures and all temperatures both equations show increased accuracy 
levels. For the compounds studied (Tables 1 and 2, Figs. l-5) it appears that 
for both equations their accuracy levels increase when both pressure and 
temperature decrease. 

If CPU times needed and the error level of the state equations obtained 
are compared, decisions can be made as to which equation of state should be 
considered for use, and in what fluid state ranges. As a general considera- 
tion, the complex equations are used for highly accurate calculations of 
P-V-T and simple thermodynamic property values, but are least desirable 
for the thermodynamic property calculations of mixtures such as activity 
coefficients of mixture components or multi-component vapor-liquid equi- 
librium ratios which involve an excessive need of computer storage facilities. 

The successful use of equations of state presupposes the ready availability 
of accurate and well-tested constants (both universal and characteristic). A 
careful use of P-V-T and vapor pressure data do not necessarily ensure 
accurate prediction of density and enthalpy, for instance. As a matter of fact, 
not all constant sets for a given substance will describe equally well the 
P-V-T, enthalpy and vapor pressure behavior of the system at the same 
time. 

McFee et al. [21] recently showed that significant errors can be introduced 
if constant sets obtained by means of inappropriate methods are used. 
Hence, the original BWR equation might be applicable with greater accuracy 
than thought possible, provided the input parameters are reliable. For the 
BWR equation this is achieved through newer calculation methods of 
constants; for instance, multiproperty regression analysis, although time 
consuming, yields very encouraging results [7-121. 

In case of equations of state derived from statistical mechanics through 
various approximations, e.g., the BACK equation, the constants (both, 
characteristic and universal) of these equations are related to the intermolec- 
ular force potential. Since molecular properties are not known with any great 
certainty, the parameters by necessity are obtained by means of curve-fitted 
empirical relations using experimental data (see eqns. 4-12). 

These data, which are correlated to molecular properties, are P- V-T state 
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parameters (particularly the saturated and critical states) and thermal prop- 
erties and vapor-liquid measurements for pure substances and/or mixtures. 

As in the multiproperty regression analysis for the BWR equation [7,8], 

the parameters needed for the BACK equation are obtained through unique 
optimization procedures (see preceding discussion on experimental data used 
and computer programming). The accuracy of the BACK equation in terms 
of the relations proposed in this work (eqns. 2-12) is best for fluids 
consisting of globular molecules, but less good for long-chain molecules. 

LIST OF SYMBOLS 

Benedict-Webb-Rubin equation constants 
Boltzmann constant 
pressure 

universal gas constant 
temperature 
volume 
compressibility factor 
density 
acentric factor 

Superscript 

0 reference. ideal 

Subscripts 

C 

r 
critical state 
reduced state (with respect to the vapor-liquid critical state) 
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